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a b s t r a c t

With the use of computational methods in the field of drug design becoming ever more prevalent, there
is pressure to port these technologies to other fields. One of the fields ripe for application of compu-
tational drug design techniques; specifically virtual screening and computer-aided molecular design, is
the design and synthesis of asymmetric catalysts. Such methods could either guide the selection of the
optimal catalyst(s) for a given reaction and a given substrate or provide an enriched selection of highly
efficient asymmetric catalysts which enable the synthetic chemists to focus on the most promising can-
didates. This would in turn provide savings in time and reduce the costs associated with the synthesis
and evaluation of large libraries of molecules. However, to be applicable to the evaluation of a large num-
2MM
SSR
olecular mechanics

irtual screening
CE

ber of potential catalysts, speed is of utmost importance. This impetus has led to the development of
medium to high throughput virtual screening (HTVS) methods for asymmetric catalyst development or
assessment, although a very few applications have been reported. These methods typically fall into four
classes: methods combining quantum mechanics and molecular mechanics (QM/MM), pure molecular
mechanics-based methods – a class which can be subdivided into static and dynamic transition state
modeling – and lastly quantitative structure selectivity relationship methods (QSSR). This review will

cover specific methods within these classes and their application to selected reactions.

© 2010 Elsevier B.V. All rights reserved.
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. Introduction

Financial and environmental pressures in the drug discovery

plement to experimental approaches such as high throughput
screening [1–3]. In fact, there are now many fairly predictive
methods (e.g., QSAR, docking programs, combinatorial library pro-
nd development field require that novel drugs are found in a
ime and cost-effective manner. To fulfill these requirements, com-
utational techniques have found their way into the toolkit of
edicinal chemists providing a viable alternative and/or com-

� This paper is part of a special issue on computational catalysis.
∗ Corresponding author. Tel.: +1 514 398 8543; fax: +1 514 398 3797.

E-mail address: nicolas.moitessier@mcgill.ca (N. Moitessier).

381-1169/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.molcata.2010.03.022
filing) available to drug discovery and development chemists [4].
Although these methods are based on approximations, they are
accurate enough to yield a higher rate of finding lead molecules
when screening large libraries compared to the traditional experi-

mental approaches [5–7]. Even though these techniques provide
small libraries enriched in bioactive molecules, the small num-
ber of potentially missed bioactive molecules, does not often
outweigh the speed and cost savings of screening a library
in silico.

http://www.sciencedirect.com/science/journal/13811169
http://www.elsevier.com/locate/molcata
mailto:nicolas.moitessier@mcgill.ca
dx.doi.org/10.1016/j.molcata.2010.03.022
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involved in the bond breaking and forming with QM and the rest
of the molecule with molecular mechanics (MM). In the context
of prediction of stereomeric excess and TS structures, QM/MM
hybrid approaches are applicable to large systems and are relatively
quicker than QM methods alone while still modeling ab initio the
ig. 1. Predicted versus experimental stereomeric excess. Gradient shows error in
stereomeric excess in relation to error associated with the prediction of TS energy

t −78 ◦C.

Unfortunately, these advances and successes in the field of com-
utational drug design and development have not stimulated the
evelopment of virtual screening (VS) or computer-aided design
ethods in other chemistry disciplines such as in the design of

symmetric catalysts. Computational tools in the field of asymmet-
ic catalyst design are typically exploited to rationalize the outcome
f a given reaction post facto rather than to predict its outcome a
riori. Yet, the ability to predict the stereomeric excess of a reaction
ould enable organic chemists to quickly test out new asymmetric

atalyst structures and to prioritize a few of them for synthesis or
pplications to specific substrates.

The lack of quick predictive computational tools for organic
hemists when compared to the field of drug design and devel-
pment is attributed to one major contributing factor: these tools
equire a higher accuracy than those found in the field of drug
esign. To accurately discriminate an excellent from a poor asym-
etric catalyst, it is necessary to have an error for the predicted

ransition state (TS) free energy differences (necessary to com-
ute the stereomeric excess), in the range of 0.5 kcal/mol or less
see Fig. 1). On the other hand, discriminating drug hits from non-
inders requires a lower resolution in the order of 3–5 kcal/mol and

s calculated on ground state structures.
Virtual drug screening methods such as docking programs use

coring functions to predict the ligand binding affinity, with many
ethods using force fields to calculate the potential energy of

he ligand–protein complex [4,8]. However, molecular mechanics
orce fields have been developed to simulate the ground states of

olecules and cannot be applied directly to the computation of
S energies. To determine TS structures and associated energies,
he most accurate approach remains quantum mechanics (QM).
owever, although QM can compute TS structures and energies
ery accurately [9], it still lacks the speed required for the devel-
pment of a QM-based VS tool and can hardly be applied to large
atalytic systems [10–17]. In addition, using QM requires expert
nowledge for the selection of the correct basis set. This neces-
ary expertise together with the required CPU resources is a major
urdle for the use of QM-guided catalyst design by experimental-

sts. To address these issues, computational organic chemists have
eveloped methods and programs that enable a faster calculation

f stereomeric excesses or prediction of favoured stereoisomers
18–20].

Methods for the prediction of stereomeric excess typically dif-
er in one or all of the following four areas: (1) consideration of
he complex (catalyst/substrate) flexibility, (2) consideration of the
atalysis A: Chemical 324 (2010) 146–155 147

reacting center flexibility, (3) computation of the complex (cata-
lyst/substrate) interactions or energy and (4) computation of the
energy of the reacting center. Even with the above variables the
reported methods typically fall into four classes: methods com-
bining quantum mechanics and molecular mechanics (QM/MM),
pure molecular mechanics-based methods (which can be subdi-
vided into rigid and dynamic TS models) and quantitative structure
selectivity relationship (QSSR). Herein, we will describe a selection
of methods that have been applied to organic asymmetric catalysts.
Each of these methods, their pros and cons, will be illustrated by
selected examples. This review is by no means an exhaustive review
but rather a discussion on the existing methods. We will focus on
how they treat the flexibility and energy of both the reacting center
and/or the catalyst/substrate complex as a whole. Although some
of the methods mentioned herein have not been directly applied to
organic asymmetric catalysts, they can yet be easily transferable to
this field and will be mentioned.

2. Virtual screening of asymmetric catalysts

2.1. Using quantum methods for virtual screening of asymmetric
catalysts

Quantum mechanics has been exploited to rationalize exper-
imental results and provide valuable insight into the reaction
pathway of many reactions [18,19,21]. Great care must be taken
when selecting basis sets for QM methods since smaller set (i.e.,
quicker methods) may provide qualitative answers but not the
desired quantitative predictions. It has only been recently that a
single study undertook a screening of a large series of catalytic
systems. Schneebeli et al. [11] computationally screened 46 dioxi-
rane catalyzed epoxidation reactions (Fig. 2) and demonstrated
good correlation between predicted and experimental stereomeric
excesses with a mean unsigned error (MUE) of around 0.5 kcal/mol
and 20%ee. The MUE is a measure of the average absolute error
between the experimentally determined and predicted values.
They also demonstrated the sensitivity of the results to the selec-
tion of the basis set. However, although QM can calculate the TS
structures and energies very accurately [10–17], the need for exper-
tise in both the method used and the reaction under investigation
when using QM-based methods limit their applicability for syn-
thetic chemists. In addition, this method can hardly be applied to
flexible systems. In fact, the epoxidation catalysts studied were all
cyclic (i.e., rigid) catalysts.

To address the computational time issue, it is possible to use
a hybrid technique, called QM/MM [22], which treats the atoms
Fig. 2. Dioxirane catalyzed epoxidation reaction mechanism. General synthetic
scheme (top) and transition state for a selected example (bottom).
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A theoretical study of hydroborations by Houk et al. (Fig. 5)
[26] was the first application of a TSFF. A model system of the
reacting center consisting of ethylene and BH3 was computed
using HF/3-21G*. From this model were derived MM2 parame-
ig. 3. QM/MM study of the asymmetric dihydroxylation of alkenes (QM in Blue,
M in black). (For interpretation of the references to color in this figure legend, the

eader is referred to the web version of the article.)

ore of the TS [23]. However, a conformational search of the whole
ystem should be carried out separately prior to the computation
f the derived optimized conformations.

One of the only examples of QM/MM methods applied to the
rediction of stereoselectivity is that of the dihydroxylation of
lkenes (Fig. 3) [24]. Initial studies using styrene as a substrate and
xperimentally determined catalyst structures demonstrated the
redictive power of QM/MM applied to this reaction, with a pre-
icted stereoselectivity closely matching the experimental results
99.4%ee predicted, 96%ee observed) [25]. In this first study, they
ssume that the solution structures of the catalyst and substrate
emain unchanged when in complex.

With this promising result, Ujaque et al. then considered more
exible substrates. However, studying n-alkenes using traditional
M methods would prove to be too difficult due to the explosion
f possible conformations when going from propene to 1-decene.
o address this combinatorial explosion, the authors carried out
n initial systematic search of all possible conformations of the
-alkenes in complex with a rigid catalyst. In this study only
wo conformations of the catalysts that have been previously
ound to be favoured, were considered [25]. This conformational
earch was carried out in two steps. First, 12 conformations of the
sO4•NH3 + CH2 CHCH3 TS core were initially generated account-

ng for the three possible approaches of the olefin and four possible
rientations of the olefin upon approach (two leading to the (R)
nd two leading to the (S) enantiomer). They then proceeded with
systematic conformational search of the alkene/catalyst systems

eparately on each conformation of the core which was frozen.
rom this set of conformations, up to 300 of the lowest energy con-
ormations for each catalyst–substrate complex according to MM
otential energies were selected. Finally, each of these conforma-
ions, including the TS core, underwent full optimization using the
elected QM/MM method and stereoselectivities were derived. The
tereoselectivities were predicted with reasonable correlation with
xperimental results, agreeing with the increase in stereoselectiv-
ty following the increase in chain length. The stereoselectivities

ere predicted with a MUE of about 0.25 kcal/mol and under 10%ee.
n this study, it clearly appears that the protocol cannot be easily
pplied by non-expert once more limiting the applicability of this
echnique by synthetic chemist on a daily basis.

.2. Rigid transition state molecular mechanics models
QM methods have shown promises as tools to design novel
symmetric catalysts. However, QM or even QM/MM is still sig-
ificantly too slow to be advantageously used to screen or design
ovel structures as compared to experimental stepwise optimiza-
Fig. 4. Example of rigid TS mode. In blue are the reacting atoms which would be
frozen during optimization. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

tion or screening. To overcome this issue one could envision the
use of MM exclusively [20,21]. MM offers the advantage of being
significantly quicker although with some caveats. Traditional MM
force fields have been developed to predict the ground state struc-
tures and energies of molecules and cannot consider breaking or
forming bonds. It is therefore necessary to derive FF parameters
for TSs. The second issue is the conformational search of the cat-
alyst/substrate systems. While conformational analysis is usually
considered separately when using QM or QM/MM methods, confor-
mational search engines are directly implemented in MM programs
reducing the necessary steps of the MM-based protocols. How-
ever, these engines locate the global (or near global) minima of
the energy function which, when using available force fields, corre-
spond to the ground state of a molecule. As a result, these engines
will never identify a TS located on a saddle point of the energy
function.

To address these two major issues, transition state force fields
(TSFF) model TSs of a reaction as a minimum on a potential energy
surface (PES). The simplest TSFF freezes or constrains the breaking
or forming bonds and their associated angles and dihedrals (Fig. 4).
A model system is first developed using QM or crystallographic
methods [21]. This model is then used to derive the optimum val-
ues for bond lengths, angles and dihedrals. These interactions can
then be added to the force field with very large force constants. Any
movement away from the optimum values are assigned high penal-
ties hence constraining all atoms to the transition state geometry.
With this MM approach, conformational searches can be carried
out and the TS energies can be computed. This model is sound as
no significant change in geometry of the transition state is usu-
ally observed from one catalyst and/or reactant to the next while
the rest of the system which is not involved in the reaction can be
assumed in its ground state.
Fig. 5. Hydroboration of alkenes.
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Fig. 8. Normal versus reverse docking methods for reaction shown in Fig. 9A. (A)
In normal docking a flexible ligand (green) is docked into a rigid protein (orange).

F
r

Fig. 6. Sharpless asymmetric dihydroxylation of xylose.

ers subsequently used to constrain the atoms involved in the TS.
hiral boranes reported in the literature were next built and a
onformation search using the modified MM2 (encompassing the
onstrained TS parameters) was applied. If multiple conformations
ith similar energies were found, a Boltzmann distribution over

ll conformations was used to compute the stereoselectivities. This
ioneering study showed that MM can be applied to predict the
tereoselectivity of a reaction with good accuracy, with an MUE
f around 0.5 kcal/mol and 30%ee. Even though this approach is
xpected to be less accurate than QM methods, the ability to screen
ompounds with higher throughput made it applicable to the VS of
ew catalysts.

Moitessier et al. also used a rigid TS model TSFF to aid in the
ationalization of the unexpected outcome of the dihydroxylation
f a benzyl protected allyl xylopyranoside. In this study, the isolated
ajor isomer was opposite to the one expected from the Sharpless
nemonic (Fig. 6) [27,28].
An initial model from a previous QM study [29] was exploited

o build the reacting center core, while using a modified CFF91
orce field for the optimization of the catalyst/substrate complexes.
o account for the flexibility of the catalyst/substrate complex a
enetic algorithm was used [8]. When applied to the dihydroxyla-
ion of the benzyl protected xylopyrannoside (1, Fig. 7), it showed
hat unexpected isomer was formed due to alkene being too large
o adopt either binding mode described previously by the Corey
nd Sharpless model (2 and 3, Fig. 7). With these promising results,
VS of alkenes was undertaken. Although the accuracy of the pre-
icted stereoselectivities was lower than pure QM methods (MUE
f around 0.7 kcal/mol and 15%ee), the method competed within a
raction of the time. In fact, this method was able to distinguish
he substrates providing the best stereoselectivities showing its
romise as a method for VS.
Another technique has been developed by Harriman and Des-
ongchamps and termed reverse docking [30]. While traditional
ocking is where a ligand is docked flexibly into a rigid protein
Fig. 8A), a rigid transition state can be docked into a flexible cat-

ig. 7. Sharpless dihydroxylation studied for optimization and validation of genetic algor
eferences to color in this figure legend, the reader is referred to the web version of the a
(B) In reverse docking the rigid TS is docked into the flexible catalyst (green). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)

alyst (Fig. 8B), modeling the reactant/catalyst transition structure.
The resulting structures and associated energies can then be used
to predict stereoselectivities.

The initial reverse docking method was built around the
AutoDock [31] conformational search engine and energy function
along with a TS optimized using HF/6-31G*. The substrate initially
undergoes a conformational search using the force field MMFF94s.
The lowest energy conformation for the substrate is then used as
input for a QM calculation to derive the TS. The TS substrate is then
frozen and the catalyst is added to the system and undergoes a
conformational search using AutoDock. This method is therefore
limited to reactions in which the catalyst is not involved as part
of the TS. For instance, in the dihydroxylation shown above, the
reacting center includes the substrate (i.e., styrene), catalyst (i.e.
(DHQD)2PHAL) and reagent (OsO4) and could not be treated using
reverse docking.

Application of reverse docking to the azidation of �,�-
unsaturated carbonyls with Miller’s catalyst validated the approach

(Fig. 9A). This first version was able to predict the conforma-
tion of the catalyst and the favoured stereoisomer although the
stereomeric excesses were poorly reproduced with MUEs above
5 kcal/mol. The developers then modified the approach to replace

ithm (black, catalyst; blue, alkene; green, frozen atoms). (For interpretation of the
rticle.)
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dihydroxylation reaction (Fig. 6) for the prediction and rational-
ig. 9. Reaction studies with reverse docking: (A) azidation of �,�-unstaturated
arbonyls, (B) TADDOL-catalyzed asymmetric hetero Diels–Alder reaction and (C)
rganocatalyzed asymmetric Strecker hydrocyanation of aldimines.

utoDock with an independent search algorithm program called
M-Dock, which has recently been implemented within MOE [32].
ike AutoDock, EM-Dock calls for a genetic algorithm to perform the

onformational search. The main difference between the AutoDock
nd EM-Dock approaches is their representation of the energy func-
ion for intermolecular interactions. While Autodock pre-computes
he interaction energy on grids using various probes, EM-Dock uses
atalysis A: Chemical 324 (2010) 146–155

a pair-wise potential to calculate these intermolecular interactions.
This second version, applied to the TADDOL-catalyzed asymmet-
ric hetero Diels–Alder reaction (Fig. 9B), identified the favoured
stereoisomer yet did not yield an improvement in the absolute
prediction of stereoselectivity [32]. After some more modifica-
tions of the algorithm, Deslongchamps and co-workers revisited
the TADDOL-catalyzed asymmetric hetero Diels–Alder reaction
[33] and also applied EM-Dock to the organocatalyzed asymmetric
Strecker hydrocyanation of aldimines and ketimines [34] (Fig. 9C).
This enhanced version resulted in the desired increase in accuracy.
EM-Dock yielded predictions of stereoselectivity with a MUE of
around 0.7 kcal/mol and around 5%ee for the TADDOL-catalyzed
asymmetric hetero Diels–Alder reaction for catalysts with higher
than 90%ee [33]. When examining the organocatalyzed asymmetric
Strecker hydrocyanation of aldimines and ketimines [34], EM-Dock
was able to identify the correct enantiomer with MUEs of around
1.0 kcal/mol and 35%ee.

2.3. Dynamic transition state molecular mechanics models

In all these MM studies, the atoms involved directly in the
formation of new interactions were frozen or constrained, an
approximation which is often reasonable. However, when the cat-
alyst conformation changes drastically in the presence of a given
substrate or when the catalyst structures are very different, the
geometry of the reacting center may move away from the geometry
of the model system used to derive the core. For optimal predic-
tions, dynamic TS models allow the geometry of the TS core to freely
move while optimizating the geometry. This approach is closer to
the search for saddle points with QM. In contrast to the rigid TS
model, both conformational search and calculation of the TS core
energy using MM is to be carried out simultaneously with the rest
of the catalytic system.

An extension of the rigid TSFF would consider smaller force
constants for interactions which would allow for some movement
away from the optimum equilibrium TS values. The challenge is
therefore to derive the proper values of these force constants. MMX
was developed so that the equilibrium bond length and force con-
stants are a function of bond order but has never been applied to
asymmetric reactions [35]. An issue arises since bond orders are not
explicitly known for transition states and in reality force constants
may not be directly proportional to bond order. ReaxFF is a similar
method which allows the bond order to vary as a function of the
bond distance [36–38]. Typically the ReaxFF force field undergoes
rigorous training using QM, followed by using molecular dynamics
to study a reactive system. Although this technique has mainly been
applied to transition metal catalytic system, it has not been applied
to asymmetric reactions, yet one could easily envision retraining of
the ReaxFF force field for this specific purpose.

To overcome the problem of the definition of bond order men-
tioned in the above methods, Norrby [39] developed the Q2MM
method where the TSFF is entirely developed from QM calcula-
tions. This method has been applied to many reactions and has
shown to be highly accurate for the prediction of stereomeric
excesses [39–49]. Although the use of QM to derive parameters
for each new reaction requires a significant investment in time
and expertise, once the force field is developed, it allows for quick
computations of large libraries of catalysts and/or substrates. Since
Q2MM is essentially deriving a force field, any conformational
search algorithm can be used to address the flexibility of the sys-
tem. As an example, Q2MM has been applied to the asymmetric
ization of stereoselectivities [43–46]. Once the force field has been
parameterized for the asymmetric dihydroxylation reaction, a con-
formational search was performed with each catalyst/substrate
system. The search procedure consisted of an initial Monte Carlo
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the mixing term (Eq. (1)). Typically � values close to 0.5 correspond
Fig. 10. Examples of reactions studied with Q2MM.

earch of “important” rotatable bonds, followed by a more rig-
rous Monte Carlo/Low Mode search using all torsions. By using
2MM, good correlations between predicted and experimental

electivities were achieved with an MUE of around 0.7 kcal/mol and
nder 10%ee [46]. Q2MM has also been successfully applied to the
orner–Wadsworth–Emmons reaction [39,47] (Fig. 10a). This reac-

ion involved two transition states, necessitating the development
f parameters for both transition states and the study of multi-
le diastereomeric pathways to identify the rate-limiting step. In
his specific case, E/Z ratios and not stereomeric excess were pre-
icted. Based on the inability to accurately determine the energy
ifference between TS1 and TS2, predictions of selectivities were
hallenging allowing only accurate predictions for catalysts with
igh selectivity for either E or Z conformations (i.e., above 95:5)
47]. Q2MM has also been applied to rhodium catalyzed hydro-
enation of enamides [48,49]. Previous computational studies have
uggested that the addition of the first hydride forming an alkyl
ydride complex (see Fig. 10B) was irreversible. The Q2MM inves-
igation therefore focused on this step and its corresponding TS
50–52,10]. Overall, on three Rh-catalysts and a variety of enam-
des, Q2MM yielded MUEs of approximately 0.65 kcal/mol and
round 12%ee.

Another option is to approximate the TS as the intersection

f two or more ground states interacting through a mixing term.
his mixing term describes the mixing between the reaction and
roduct PES. This technique, known as the empirical valence bond
ethod (EVB) (Fig. 11), was introduced and developed by Warshel
Fig. 11. Mixing of two ground states to find the TS.

and Weiss [53–55]. For the sake of illustration, we will consider only
two states (reactants and products), but more than two states can
be considered simultaneously [56]. When considering a two states
asymmetric reaction, the potential energy of the system (Esys) can
be computed from the force field energies of the reactants (Er) and
products (Ep) and the mixing energy term (Emix) by solving Eq. (1):
∣
∣
∣
∣

Er − Esys Emix
Emix Ep − Esys

∣
∣
∣
∣

= 0 (1)

Although it was initially used to simulate enzymatic reactions
[57], it has also been applied to studying the reaction pathways
of organic reactions such as SN2 reactions [58,59], alkylation reac-
tions [60] and ester cleavage [61]. However, as EVB has never been
applied to asymmetric organic reactions, this method is outside the
scope of this review and only a quick description is given herein.
For more details, the readers are referred to excellent reviews
[53,55,57]. In addition, although EVB can be exploited to compute
the entire PES of reactions, we will only discuss the computation of
TSs geometries and energies of a system progressing from reactants
to products.

For EVB to accurately predict TS energies and structures, some
factors should be considered. A first issue comes from the use of
force fields. Most force fields are only meant to reproduce the
heats of formation and compare relative energies of molecules with
identical connectivity. Within EVB, this issue is addressed by the
use of a correcting term which ensures that the relative energy
of the reactants and products is accounted for. This correcting
term can be computed using QM methods. Another issue arises
when structures are far away from the energy minimum. Force
fields have difficulties with distorted structures and some force
fields (more specifically class I force fields) do not have an accurate
description of the van der Waals energy term at short distance (i.e.,
steep Lennard Jones potential). To overcome this short-coming,
more complex functions that better represent the PES for distorted
structures can be used, such as the Morse-like potential in CFF
[62] or the most popular MM3 [63–67]. An excellent discussion of
these limitations can be found in an account by Jensen and Norrby
[20].

In order to explore the PES including the TS, the EVB mapping
potential (Eq. (2)) is used to drive molecular dynamic simulation
over high energy barriers such a saddle point corresponding to TSs:

Emodel = (1 − �)Ereactant + �Eproduct (2)

In the case of a two state asymmetric reactions, this model would
be a weighed sum of the energy of the reactants and products.
These energies are then projected onto the true PES considering
to a minimum on the model PES allowing for adequate searching
of the TS (Fig. 12). The reaction force field (RFF) [68] and multi
configurational molecular mechanics (MCMM) [69,70] are similar
approaches [71]. These techniques have been validated by simu-
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ig. 12. All energies are calculated on the model PES then projected onto the true
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ating reaction pathways (organic and enzymatic) but not directly
pplied to prediction of stereomeric excesses.

If only the relative energy between two stereoisomeric TSs is
esired, it is also possible to neglect the mixing term (equivalent
or both stereomeric TSs) and assume � is equal to 0.5 for the TS.
his idea has been implemented within the SEAM method [72–75].
his method has been applied to the prediction of the geometry
f transition states and reactivities of reactants but not to the pre-
iction of stereoselectivities. The initial versions of SEAM [72,73]
ere validated on simple reactions such as SN2 displacement of

lkyl halides. These initial studies demonstrated good correlations
etween experimental and predicted reactivities. In later studies
n the study of achiral pericyclic reactions, Jensen and co-workers
ompared the SEAM predictions to a semi-empirical method (PM3)
gain demonstrating a good correlation [74,75].

Another option, instead of relying on force field parameters
eveloped using QM methods as in Q2MM or mixing the energies
f reactant and product is to automatically create the TS param-
ters on the fly as in the program Ace developed by Corbeil et
l. [76]. Based on the Hammond–Leffler postulate, Ace calculates
he TS energy by duplication of interactions (Fig. 13). For example,
he energy of each of the forming bonds in Fig. 13 is computed
s weighed sum of a non-bond and a covalent interaction. This
eighed sum also allows Ace to consider the earliness or late-
ess of the TS. By doing so, Ace avoids going through QM methods

or development of the TS parameters as in TSFF methods along
ith avoiding calculation of multiple energies for a single point

long the PES as with EVB and SEAM methods. The major draw-

ack of Ace is the lack of consideration of asynchronous reactions.
ll the forming/breaking bonds are assumed to advance simultane-
usly (same � values). As a validation, Ace accurately predicted the
orrect stereoisomers of 41 out of 44 Diels–Alder reactions, with
ailures associated with carbohydrate-based chiral auxiliaries. This

ig. 13. TS energy for carbon–carbon bond formation for proline catalyzed aldol
eaction. Figure uses � = 0.6 in equation.
atalysis A: Chemical 324 (2010) 146–155

reveals a major limitation of FFs and their inability to predict con-
formations of structures on which they have not been trained. Ace
was also applied to a series of 40 aldol reactions having correctly
predicted the correct stereoisomer in 38 cases.

2.4. Using quantitative structure selectivity relationship (QSSR)
for virtual screening of asymmetric catalysts

Both QM and MM method provide TS energies as the output,
but both require that the TS structure is being modeled correctly
by the method, especially in multiple TS reactions. In the field of
drug design this would be similar to knowing the structure of your
drug target (e.g., enzyme). When the target structure is unknown,
medicinal chemists may turn to quantitative structure activity rela-
tionship (QSAR) methods which provide a relationship between
the biological activity and either physical or chemical proper-
ties of a molecule. This approach is rational as in practice active
compounds typically share similar chemical features and physi-
cal properties. When QSAR techniques are applied to the field of
asymmetric catalyst development, they are rebranded QSSR since
selectivity and not activity is the desired predicted property. QSSR
is defined as the process that relates chemical structure quantita-
tively to a chemical transformation [77]. In essence, the simplest
QSSR technique relates a series of descriptors, whether they are
constitutional, topological, geometrical and physicochemical, to
chemical structures [78,79] enabling prediction of stereoselectivi-
ties without prediction of TS energies. For example, Chavali et al.
[80,81] used molecular indices describing electronic structures and
connectivities to predict catalytic activity and toxicity. Even though
this technique was not used to predict stereomeric excesses, it was
a demonstration of the potential of QSSR techniques to predict
chemical properties.

It is also desirable to relate structural features directly to Gibbs
free energy. Based on this, Oslob et al. [82] predicted regioselectiv-
ities in palladium catalyzed allylation (Fig. 14), it was postulated
that the reactivity of the terminal allyl carbon can be evaluated
by a linear relationship between descriptors such as bond dis-
tance, angles and a series of dihedral angles which describe the
relative position of the allyl group, the palladium atom and the lig-
and with regio- and/or stereoselectivity. The regioselective ratio
was found to be predicted best using four descriptors: the breaking
Pd–C bond distance, two dihedrals describing the in-plane distor-
tion and displacement of the allyl group and the final, and most
influential, the energy increase associated with the incoming nucle-
ophile. These descriptors were generated from a MM2 minimized
ground state structure. This energy increase was calculated by mea-
alone and the minimized complex in presence of the nucleophile.
Overall, this techniques yielded good correlations between exper-
imental and predicted energies with MUE of around 0.9 kcal/mol.

Fig. 14. Palladium catalyzed allylation.
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his work showed promise and the use of geometrical descriptors
o relate chemical structure to regioselectivity can most likely be
pplied to other reactions. In the case shown in Fig. 14, regioselec-
ivity leads to stereoselectivity as the C2-symmetrical substrate is
esymmetrized.

Alvarez et al. [83] used a method termed continuous chirality
easure, to determine which portions of the molecule are inducing

tereoselectivity. The method was first used to rationalize the stere-
selectivity of the bis(oxazoline)copper(II)-catalyzed Diels–Alder
eaction. They deduced that the chirality of the adduct is mainly
nduced by the aromatic flaps (Fig. 15, portion in blue) which affect
he orientation of the diene. Very good correlations between exper-
mental stereoselectivities and continuous chirality measures were
bserved for compounds with greater than 80%ee. Upon further
nvestigation, a new bis(oxazoline)copper(II) catalyst was proposed

o be highly stereoselective (catalyst in Fig. 15) but was unfortu-
ately not synthesized. It is worth mentioning that the use of a
pecifically modified MMFF94 force field to predict the stereose-
ectivity of this reaction was poorly accurate due to a number of

Fig. 16. QSSR using quantum mechanical interaction field analysis in the d
atalysis A: Chemical 324 (2010) 146–155 153

factors including the twist of the copper complex and the absence
of counterion in the computations. This metal complex adopts any
conformation ranging from planar to tetrahedral rendering the
force field development very challenging [84].

Descriptors for QSSR other than structural descriptors are quan-
tum molecular interaction fields [85,86] (see Fig. 16). Kozlowski and
co-workers superimposed optimized TS conformation of a series
of known catalysts onto a grid (similar to CoMFA in the field of
drug design [87]). At each point on this grid the interaction energy
between the molecule under investigation and a carbon 2s electron
probe is calculated using QM methods. Regression analysis is next
performed on the computed grids to find regions common to all cat-
alysts where increases in energy of the probe results in increases
(green region in Fig. 16) or decreases (red region in Fig. 16) in stere-
oselectivities (For interpretation of the references to color in this
text, the reader is referred to the web version of the article). As
soon as the training with a set of known catalysts has been carried
out, the grids can then be used to predict the selectivity of new
catalysts. Kozlowski and co-workers applied this method to the
addition of dialkylzinc to aldehydes catalyzed by �-amino alcohols
and achieved excellent correlations between predicted and experi-
mental stereoselectivities with a MUE of around 0.15 kcal/mol and
5%ee on a training set of 18 catalysts [85]. This level of accuracy
was retained when a small testing set of four catalysts was used
(MUE around 0.25 kcal/mol and 7%ee). Further use of this model
led to the development of trans-1-amino-2-hydroxy cyclohexane
derivatives as a chiral catalyst for amino alcohol catalyzed alde-
hyde alkylation reactions. In fact, this is a rare example of a real
application of one of the technique to the design and synthesis of
a novel asymmetric catalyst. Excellent correlation between experi-
ments and predictions led to an easy identification of catalysts with
low, medium and high asymmetric induction [88,89]. At the same
time Lipkowitz et al. used quantum molecular interaction fields on
bis(oxazoline)copper(II) catalyzed Diels–Alder reactions (Fig. 15).
Their model identified key regions where addition or removal of
tions between predicted and experimental stereoselectivities. It is
also possible to omit the alignment step and use a distance corre-
lation map as in Sciabola et al. [90]. Their belief that the regression
analysis is dependent on the alignment method led to the develop-

esign of chiral amino alcohols for dialkylzinc addition to aldehydes.
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Fig. 17. Summary of methods used to find transition states.

ent of this model. Application to both the addition of dialkyl zinc
o aldehydes and bis(oxazoline)copper(II) catalyzed Diels–Alder
eaction yielded models with accuracy similar to the Kozlowski
ethod [85].

. Summary

In summary, it is possible to effectively search for the TS of reac-
ions using a plethora of methods (Fig. 17). However caution is
eeded when selecting the method. For a complete one time search
f a PES, either QM or EVB methods are recommended. For highly
ccurate prediction of stereomeric excesses, QM methods should
lso be used. If one wants to perform a VS or computer-aided opti-
ization of a catalyst, specialized MM methods such as TSFF, EVB,

EAM or ACE are more suited.
One must also take results published with a grain of salt. Method

ublished with low errors in prediction of %ee may be a result
f selecting only reactions/cases where the %ee is very high. This
ould result in cases where the prediction accuracy may be due to

he non-linearity in error in %ee with respect to error in TS energy
Fig. 1). Therefore a better measure of accuracy would be the use of

UE in prediction of TS energies.
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